0的阶乘就是1,这是人为的规定。
但是这个人为规定不是随意规定的,是根据正整数的阶乘运算关系扩展而来的。
因为本来n(n是正整数)的阶乘就是从1×2×……×n这n个数相乘。但是这个定义对0就无效了。那么人们只能根据不同数的阶乘关系来扩展定义。
从正整数的阶乘能看出来,(n+1)!÷n!=n+1,所以n!=(n+1)!÷(n+1)。那么把这个式子扩展到0上,就得到0!=1!÷1=1÷1=1。就是这样扩展定义的。
扩展资料:
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的
阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。阶乘常用于计算机领域。
大于等于1
任何大于等于1 的自然数n 阶乘表示方法:
n!=1×2×3×...×(n-1)n或n!=(n-1)!×n0的阶乘
其中0!=1
参考资料来源:百度百科-阶乘
从阶乘的定义出发。从阶乘表达式n!=n×(n-1)!中,知道一个数的阶乘是递推定义的。比如要计算一个任意的整数m的阶乘,我们就把m作为初值,计算m!=m×(m-1)!。
同样的,当m=l时,m!=1!=1×0!=1,取等式中最后一个等号的两边,即1×0!=1,这个等式两边同时约去1,就得到如下结果:0!=1。
阶乘的计算方法是1乘以2乘以3乘以4,一直乘到所要求的数。例如所要求的数是6,则阶乘式是1×2×3×…×6,得到的积是720,720就是6的阶乘。
如果所要求的数是n,则阶乘式是1×2×3×…×n,设得到的积是x,x就是n的阶乘。任何大于1的自然数n的阶乘的表示方法是:n!=1×2×3×……×n或n!=n×(n-1)!。
扩展资料
双阶乘:
双阶乘用“m!!”表示。当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如:
当 m 是负奇数时,表示绝对值小于它的绝对值的所有负奇数的绝对值积的倒数。
当 m 是负偶数时,m!!不存在。
自然数双阶乘比的极限:
参考资料来源:百度百科-阶乘
简单地说,这就是规定。
!表示阶乘。阶乘就是一个数一直乘到1为止的积。
可以这么想,一直乘,乘到1,所以,0!=1
从极限的角度上来说,等于一,
方法如下,
请作参考:
1、C的计算公式:
C表示组合方法的数量,比如:C(3,2),表示从3个物体中选出2个,总共的方法是3种,分别是甲乙、甲丙、乙丙(3个物体是不相同的情况下)。
2、A的计算公式:
A表示排列方法的数量,比如:n个不同的物体,要取出m个(m=n)进行排列,方法就是A(n,m)种,也可以这样想,排列放第一个有n种选择,第二个有n-1种选择,第三个有n-2种选择·····第m个有n+1-m种选择,所以总共的排列方法是n(n-1)(n-2)···(n+1-m),也等于A(n,m)。
两个常用的排列基本计数原理及应用:
1、加法原理和分类计数法:
每一类中的每一种方法都可以独立地完成此任务,两类不同办法中的具体方法,互不相同(即分类不重),完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务,各步计数相互独立,只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。