导读:说到例题,大多数人都知道,有朋友问随时可以找我,当然了,还有朋友想问高中数学必修一至必修五公式,这到底怎么回事呢?实际上高一数学错题集及解析呢,接下来,小编就来教教大家高中数学例题100道带解析,希望大家有所收获。
高中数学例题100道带解析
是不是数学没考好
一、选择题
1.下列八个关系式①{0}= ② =0 ③ { } ④ { } ⑤{0} ⑥0 ⑦ {0} ⑧ { }其中正确的个数( )
(A)4 (B)5 (C)6 (D)7
2.集合{1,2,3}的真子集共有( )
(A)5个 (B)6个 (C)7个 (D)8个
3.集合A={x } B={ } C={ }又 则有( )
(A)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一个
4.设A、B是全集U的两个子集,且A B,则下列式子成立的是( )
(A)CUA CUB (B)CUA CUB=U
(C)A CUB= (D)CUA B=
5.已知集合A={ } B={ }则A =( )
(A)R (B){ }
(C){ } (D){ }
6.下列语句:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示为{1,1,2};(4)集合{ }是有限集,正确的是( )
(A)只有(1)和(4) (B)只有(2)和(3)
(C)只有(2) (D)以上语句都不对
7.已知A={1,2,a2-3a-1},B={1,3},A {3,1}则a等于( )
(A)-4或1 (B)-1或4 (C)-1 (D)4
8.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(CUA) (CUB)=( )
(A){0} (B){0,1}
(C){0,1,4} (D){0,1,2,3,4}
9.设S、T是两个非空集合,且S T,T S,令X=S 那么S X=( )
(A)X (B)T (C) (D)S
10.设A={x },B={x },若A B={2,3,5},A、B分别为( )
(A){3,5}、{2,3} (B){2,3}、{3,5}
(C){2,5}、{3,5} (D){3,5}、{2,5}
11.设一元二次方程ax2+bx+c=0(a<0)的根的判别式 ,则不等式ax2+bx+c 0的解集为( )
(A)R (B)
(C){ } (D){ }
(A)P Q
(B)Q P
(C)P=Q (D)P Q=
12.已知P={ },Q={ ,对于一切 R成立},则下列关系式中成立的是( )
13.若M={ },N={ Z},则M N等于( )
(A) (B){ } (C){0} (D)Z
14.下列各式中,正确的是( )
(A)2
(B){ }
(C){ }
(D){ }={ }
15.设U={1,2,3,4,5},A,B为U的子集,若A B={2},(CUA) B={4},(CUA) (CUB)={1,5},则下列结论正确的是( )
(A)3 (B)3
(C)3 (D)3
16.若U、 分别表示全集和空集,且(CUA) A,则集合A与B必须满足( )
(A) (B)
(C)B= (D)A=U且A B
17.已知U=N,A={ },则CUA等于( )
(A){0,1,2,3,4,5,6} (B){1,2,3,4,5,6}
(C){0,1,2,3,4,5} (D){1,2,3,4,5}
18.二次函数y=-3x2+mx+m+1的图像与x轴没有交点,则m的取值范围是( )
(A){ } (B){ }
(C){ } (D){ }
19.设全集U={(x,y) },集合M={(x,y) },N={(x,y) },那么(CUM) (CUN)等于( )
(A){(2,-2)} (B){(-2,2)}
(C) (D)(CUN)
20.不等式 <x2-4的解集是( )
(A){x } (B){x }
(C){ x } (D){ x }
二、填空题
1. 在直角坐标系中,坐标轴上的点的集合可表示为
2. 若A={1,4,x},B={1,x2}且A B=B,则x=
3. 若A={x } B={x },全集U=R,则A =
4. 若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是
5. 集合{a,b,c}的所有子集是 真子集是 ;非空真子集是
6. 方程x2-5x+6=0的解集可表示为
方程组
7.设集合A={ },B={x },且A B,则实数k的取值范围是
。
8.设全集U={x 为小于20的非负奇数},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,则A B=
9.设U={三角形},M={直角三角形},N={等腰三角形},则M N=
M N= CUM=
CUN= CU(M N)=
10.设全集为 ,用集合A、B、C的交、并、补集符号表图中的阴影部分。
(1) (2)
(3)
三、解答题
1.设全集U={1,2,3,4},且={ x2-5x+m=0,x U}若CUA={1,4},求m的值。
2.已知集合A={a 关于x的方程x2-ax+1=0,有实根},B={a 不等式ax2-x+1>0对一切x R成立},求A B。
3.已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求实数a。
4.已知方程x2-(k2-9)+k2-5k+6=0的一根小于1,另一根大于2,求实数k的取值范围。
5.设A={x ,其中x R,如果A B=B,求实数a的取值范围。<br><br><br><br><br>6.设全集U={x },集合A={x },B={ x2+px+12=0},且(CUA) B={1,4,3,5},求实数P、q的值。
7.若不等式x2-ax+b<0的解集是{ },求不等式bx2-ax+1>0的解集。
8.集合A={(x,y) },集合B={(x,y) ,且0 },又A ,求实数m的取值范围。
第一单元 集合
一、 选择题
题号 1 2 3 4 5 6 7 8 9 10
答案 B C B C B C B C D A
题号 11 12 13 14 15 16 17 18 19 20
答案 D A A D C D A D A B
二、 填空题答案
1.{(x,y) } 2.0, 3.{x ,或x 3} 4.{ } 5. ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c};除去{a,b,c}外所有子集;除去 及{a,b,c}外的所有子集 6.{2,3};{2,3} 7.{ } 8.{1,5,9,11} 9.{等腰直角三角形};{等腰或直角三角形},{斜三角形},{不等边三角形},{既非等腰也非直角三角形}。 10.(1) (A B) (2)[(CUA) (CUB)] ;(3)(A B) (CUC)
三、解答题
1.m=2×3=6 2.{a } 3.a=-1
4. 提示:令f(1)<0 且f(2)<0解得
5.提示:A={0,-4},又A B=B,所以B A
(Ⅰ)B= 时, 4(a+1)2-4(a2-1)<0,得a<-1
(Ⅱ)B={0}或B={-4}时, 0 得a=-1
(Ⅲ)B={0,-4}, 解得a=1
综上所述实数a=1 或a -1
6.U={1,2,3,4,5} A={1,4}或A={2,3} CuA={2,3,5}或{1,4,5} B={3,4}(CUA) B=(1,3,4,5),又 B={3,4} CUA={1,4,5} 故A只有等于集合{2,3}
P=-(3+4)=-7 q=2×3=6
7.方程x2-ax-b=0的解集为{2,3},由韦达定理a=2+3=5,b=2×3=6,不等式bx2-ax+1>0化为6x2-5x+1>0 解得{x }
8.由A B 知方程组
得x2+(m-1)x=0 在0 x 内有解, 即m 3或m -1。
若 3,则x1+x2=1-m<0,x1x2=1,所以方程只有负根。
若m -1,x1+x2=1-m>0,x1x2=1,所以方程有两正根,且两根均为1或两根一个大于1,一个小于1,即至少有一根在[0,2]内。
因此{m <m -1}。
求100道高中数学计算题。。。
本人强烈推荐买黄冈的那个数学分册练习的书,做完全套你就无敌了。或者是高中数学的那本题库的书,做完一样无敌
高中数学必修一至必修四的全部典型例题,至少一百道。
我这里有,但是没有电子版的,需要的话练习
高中联难度几何题100道有答案吗
出书的都一定有答案啊,不然不知道答案怎么能起到练习的作用呢?/
我需要高一数学选择题100道
1.函数 的定义域是
A.(0,1〕 B. (0,+∞) C. (1,+∞) D. 〔1,+∞)
2.下列函数中,在其定义域内既是奇函数又是减函数的是
A. B. C. D.
3.函数 的反函数是
(A) (B)
(C) (D)
4.函数 的反函数 的图像与 轴交于点 (如图2所示),则方程 在 上的根是
A.4 B.3 C. 2 D.1
5.已知函数 的图象与函数 的图象关于直线 对称,则
A. B.
C. D.
6.设函数f(x)=loga(x+b)(a>0,a≠1)的图象过点(0, 0),其反函数的图像过点(1,2),则a+b等于
A.6 B.5 C.4 D.3
7.设 , , ,则
A. B. C. D.
8.已知 ,则
A.n<m<1 B.m<n<1 C.1<m<n D.1<n<m
9.设 ,则 的值为
A. B. C. D.
10.如果函数 的图像与函数 的图像关于原点对称,则y= 的表达式为
A. B. C. D.
11.设函数 的反函数为 ,且 的图像过点 ,则 的图像必过
A. B. C. D.
12.设
A.0 B.1 C.2 D.3
13.函数 的反函数是
A. B.
C. D.
14.已知函数 ( ),若 , 则
A. B.
C. D. 与 的大小不能确定
15.设 是R上的任意函数,则下列叙述正确的是
A. 是奇函数 B. 是奇函数
C. 是偶函数 D. 是偶函数
16.函数
A. B. C. D.
17.若函数 且满足 则 的解析式是
A. B . C. D.
18.设f(x)= 则不等式f(x)>2的解集为
A. B. C. D.(1,2)
19.设 ,则 的定义域为
A. B. C. D.
20.点 在函数 的图像上,则下列各点中必在其反函数图像上的是
21.对于定义域是R的任何奇函数,都有
22.函数 的定义域为 ,则其值域为
23.已知函数 的定义域为 ,集合 , ,则 的元素的个数为
A.1 B.0 C.0或1 D.无数个
24.下列关系中正确的是
A. B.
C. D.
25.若 且 那么 的最小值为
A. 2 B. C. D.
26.函数 的图象是( )
A B C D
27.已知函数 的图象如右图示,那么,
函数 的图象是( )
A B C D
28.若 的反函数图象必过定点 ,则 点的坐标为
A. B. C. D.
29.函数 与 的图象的交点个数是
A.0 B.1 C.2 D.3
30.若 与 在区间[1,2]都是减函数,则a的范围是
A. B. C.(0,1) D.(0,1]
31.函数 和 的递增区间依次是
A. B. C. D.
32.已知f(x)是R的增函数,若令 则F(x)是R上的
A.增函数 B.减函数 C.先减后增的函数 D.先增后减的函数
33.已知f(x)是奇函数,定义域为 ,又f(x)在区间 上为增函数,且f(-1)=0,则满足f(x)>0的取值范围是
A. B.(0,1) C. D.
34.若 与 都是奇函数,且 在 上有最大值 ,则在 上 有
A.最小值 B.最大值 C.最小值 D.最小值
35.定义域为 的函数 的值域为 ,则函数 的值域是
A. B. C. D.
36.已知函数 有反函数,则方程 是常数
A.有且仅有一个实根 B.至多一个实根 C.至少一个实根 D.不同于以上结论
37.将 的图象
A.先向左平行移动 个单位长度 B.先向右平行移动 个单位长度
C.先向上平行移动 个单位长度 D.先向下平行移动 个单位长度
再作关于直线 对称的图象,可得到函数 的图象.
38.函数 的图象与函数 的图像关于原点对称,则 的表达式为(A) (B)
(C) (D)
39.已知集合M={x| },N={y|y=3x2+1,xR},则MN=( )
A. B. {x|x1} C.{x|x1} D. {x| x1或x0}
40.设 的定义域为 给出下列函数, , ,
, ,其中定义域仍是 的有( )
A . 1个 B. 2个 C . 3个 D. 4个
[参考答案]
BABCD,CADDD,CCCAD,ADCBD,CACDB,CADDD,CBCDC,BDDBB
求高一数学错题集,最好有100多道
易错题集
函数错题集
1.(如中)方程组 的解集是___________
[错解一] 或
[错解二]
[错解分析]用列举法把答案写成 或 ,既不是列举法也不是描述法,也就是不符合集合表示法的基本模式,而集合 .或用描述法把集合写成 也是不正确的.这个集合的元素有无限多个,它表示这样的点 或
[正解]
2.(如中) 的____________条件
[错解]充分但不必要条件
[错解分析]未能搞清原命题与逆否命题的等价关系
[正解]既不充分也不必要条件
3.(如中)在 内,下列对应是否是一一映射?若是,说明之,若不是,能否对x或k加以限制,使之成为一一映射?(1) (2)
[错解]上述对应皆为一一映射
[错解分析]概念不清,考虑问题不严谨
[正解](1) 时,不是一一映射, 时,是一一映射
(2)不是一一映射,当 时,是一一映射
4.(如中)若函数 ,则 的定义域为
[错解]
[错解分析] 与 是两个不同的函数,有不同的定义域和对应法则
[正解]
5.(如中)函数 的奇偶性是 ______
[错解] 为偶函数
[错解分析]没有考虑定义域且变形是出现了错误
[正解] 为非奇非偶函数
6.(如中)函数 的反函数是________________
[错解]
[错解分析]一是符合错误,二是定义域未从原函数值域去确定
[正解]
7.(如中)当 时,函数 在 时取最大值,则实数 的取值范围是______________
[错解]
[错解分析]对函数的单调性的概念不清,导致错误
[正解]
8.(如中)若 ,那么 的最大值为__________
[错解]10、12、15
[错解分析]忽略了 的限制
[正解]11
9.(如中)若不等式 的解集为 ,求这个不等式
[错解]不等式可设为
这个不等式 应与同解
当 时, ;当 时,
所求的不等式为
或
[错解分析]忽略了 的隐含条件
[正解] 即
10.(如中)设关于 的二次方程 的两根 满足 ,求 的取值范围.
[错解]
解:
得
[错解分析]从第一步到第二步导致了范围的扩大
[正解]设
方程 的两个根 满足
解之得:
向量、三角函数
1 (如中)已知方程 (a为大于1的常数)的两根为 , ,
且 、 ,则 的值是_________________.
错误分析:忽略了隐含限制 是方程 的两个负根,从而导致错误.
正确解法: ,
是方程 的两个负根
又 即
由 = = = 可得
答案: -2 .
2 (如中)若向量 = , = ,且 , 的夹角为钝角,则 的取值范围是______________.
错误分析:只由 的夹角为钝角得到 而忽视了 不是 夹角为钝角的充要条件,因为 的夹角为 时也有 从而扩大 的范围,导致错误.
正确解法: , 的夹角为钝角,
解得 或 (1)
又由 共线且反向可得 (2)
由(1),(2)得 的范围是
答案: .
3(如中)为了得到函数 的图象,可以将函数 的图象( )
A 向右平移 B 向右平移 C 向左平移 D向左平移
错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.
答案: B
4 (如中)函数 的最小正周期为 ( )
A B C D
错误分析:将函数解析式化为 后得到周期 ,而忽视了定义域的限制,导致出错.
答案: B
5(如中)已知 ,则 的取值范围是_______________.错误分析:由 得 代入 中,化为关于 的二次函数在 上的范围,而忽视了 的隐含限制,导致错误.
答案: .
略解: 由 得
将(1)代入 得 = .
6 (如中)若 ,且 ,则 _______________.
错误分析:直接由 ,及 求 的值代入求得两解,忽略隐含限制 出错.
答案: .
7 (如中)在 中, ,则 的值为 ( )
A 20 B C D
错误分析:错误认为 ,从而出错.
答案: B
略解: 由题意可知 ,
故 = .
8(如中)关于非零向量 和 ,有下列四个命题:
(1)“ ”的充要条件是“ 和 的方向相同”;
(2)“ ” 的充要条件是“ 和 的方向相反”;
(3)“ ” 的充要条件是“ 和 有相等的模”;
(4)“ ” 的充要条件是“ 和 的方向相同”;
其中真命题的个数是 ( )
A 1 B 2 C 3 D 4
错误分析:对不等式 的认识不清.
答案: B.
9(如中)已知向量 ,且 求
(1) 及
(2)若 的最小值是 ,求实数 的值.
错误分析:(1)求出 = 后,而不知进一步化为 ,人为增加难度;
(2)化为关于 的二次函数在 的最值问题,不知对对称轴方程讨论.
答案: (1)易求 , =
(2) = =
=
从而:当 时, 与题意矛盾, 不合题意;
当 时,
当 时, 解得 ,不满足
综合可得: 实数 的值为 .
10(如中)在 中,已知 ,且 的一个内角为直角,求实数 的值.
错误分析:是自以为是,凭直觉认为某个角度是直角,而忽视对诸情况的讨论.
答案: (1)若 即
故 ,从而 解得
(2)若 即 ,也就是 ,而 故 ,解得
(3)若 即 ,也就是 而 ,故 ,解得
综合上面讨论可知, 或 或
数列
1.(如中)在等比数列 中,若 则 的值为____________
[错解] 或
[错解分析] 没有意识到所给条件隐含公比为正
[正解]
2.(如中)实数项等比数列 的前 项的和为 ,若 ,则公比 等于________-
[错解]
[错解分析]用前 项的和公式求解本题,计算量大,出错,应活用性质
[正解]
3.(如中)从集合 中任取三个不同的数,使这三个数成等差数列,这样的等差数列最多有_________
[错解]90个
[错解分析]没有考虑公差为负的情况,思考欠全面
[正解]180个
4.(如中)设数列 满足 ,则 为等差数列是 为等比数列的____________条件
[错解]充分
[错解分析] 对数运算不清,判别方法没寻求到或半途而废
[正解]充要
5.(如中)若数列 是等差数列,其前 项的和为 ,则 也是等差数列,类比以上性质,等比数列 ,则 =__________, 也是等比数列
[错解]
[错解分析] 没有对 仔细分析,其为算术平均数,
[正解]
6.(如中)已知数列 中, 则 等于______________
[错解] 或 或
[错解分析] 盲目下结论,没能归纳出该数列项的特点
[正解]
7.(如中)已知数列 中, ( 是与 无关的实数常数),且满足 ,则实数 的取值范围是___________
[错解]
[错解分析]审题不清,若能结合函数分析会较好
[正解]
8.(如中)一种产品的年产量第一年为 件,第二年比第一年增长 %,第三年比第二年增长 %,且 ,若年平均增长 %,则有 ___ (填 )
[错解]
[错解分析]实际问题的处理较生疏,基本不等式的使用不娴熟
[正解]
⒐ (如中)设数列的前 项和为 ,求这个数列的通项公公式
[错解]
[错解分析]此题错在没有分析 的情况,以偏概全.误认为任何情况下都有
[正解]
因此数列的通项公式是
⒑(如中)已知一个等比数列 前四项之积为 ,第二、三项的和为 ,求这个等比数列的公比.
[错解] 四个数成等比数列,可设其分别为
则有 ,解得 或 ,
故原数列的公比为 或
[错解分析]按上述设法,等比数列公比 ,各项一定同号,而原题中无此条件
[正解]设四个数分别为
则 ,
由 时,可得
当 时,可得
不等式
1、(如中)设 若0f(b)>f(c),则下列结论中正确的是
A (a-1)(c-1)>0 B ac>1 C ac=1 D ac>1
错解原因是没有数形结合意识,正解是作出函数 的图象,由图可得出选D.
2、(如中)设 成立的充分不必要条件是
A B C D x<-1
错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D。
3、(如中)不等式 的解集是
A B C D
错解:选B,不等式的等价转化出现错误,没考虑x=-2的情形。正确答案为D。
4、(如中)某工厂第一年的产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则
A B C D
错解:对概念理解不清,不能灵活运用平均数的关系。正确答案为B。
5、(如中)已知 ,则2a+3b的取值范围是
A B C D
错解:对条件“ ”不是等价转化,解出a,b的范围,再求2a+3b的范围,扩大了范围。正解:用待定系数法,解出2a+3b= (a+b) (a-b),求出结果为D。
6、(如中)设 ,则 的最大值为
错解:有消元意识,但没注意到元的范围。正解:由 得: ,且 ,原式= ,求出最大值为1。
7、(如中)若 恒成立,则a的最小值是
错解:不能灵活运用平均数的关系,正解:由 ,即 ,故a的最小值是 。
8、(如中)已知两正数x,y 满足x+y=1,则z= 的最小值为 。
错解一、因为对a>0,恒有 ,从而z= 4,所以z的最小值是4。
错解二、 ,所以z的最小值是 。
错解分析:解一等号成立的条件是 相矛盾。解二等号成立的条件是 ,与 相矛盾。
正解:z= = = ,令t=xy, 则 ,由 在 上单调递减,故当t= 时 有最小值 ,所以当 时z有最小值 。
9、(如中)是否存在常数 c,使得不等式 对任意正数 x,y恒成立?
错解:证明不等式 恒成立,故说明c存在。
正解:令x=y得 ,故猜想c= ,下证不等式 恒成立。
要证不等式 ,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证 ,即2xy≤ ,而此不等式恒成立,同理不等式 也成立,故存在c= 使原不等式恒成立。
10、(如中)已知适合不等式 的x的最大值为3,求p的值。
错解:对此不等式无法进行等价转化,不理解“x的最大值为3”的含义。
正解:因为x的最大值为3,故x-3<0,原不等式等价于 ,
即 ,则 ,
设(1)(2)的根分别为 ,则
若 ,则9-15+p-2=0,p=8
若 ,则9-9+p+2=0,p=-2
当a=-2时,原方程组无解,则p=8
(100分悬赏)高一数学11道填空题(只要答案,不求过程)
1、(2kπ+π/6,2kπ+π/2]
2、[-1,0]
3、-13/7
4、-√2 4kπ+-π/2
5、q=-π/5
求解高中数学问题?
本题是高中数学的一道复数题,求解时,把i当成固定符号,带入求解即可,楼主所问问题如图所示。
求高一数学题100道!!!越简单的越好
去猿题库高中同步练习