使用到的库: dlib+Opencv python版本: 3.8 编译环境: Jupyter Notebook (Anaconda3)
私信小编01即可获取大量Python学习资源
请参考
在视频流中抓取人脸特征,并保存为 256*256 大小的图片文件共20张,这就是我们建立数据集的第一步,用来训练人脸识别。
不一定是256*256的尺寸,可以根据自己的需求来调整大小,图片越大训练结果会愈加精确,但也会影响训练模型的时间。
其中:
代码:
import cv2 import dlib import os import sys import random # 存储位置 output_dir = 'D:/No1WorkSpace/JupyterNotebook/Facetrainset/Num&Name' #这里填编号+人名 size = 256 #图片边长 if not os.path.exists(output_dir): os.makedirs(output_dir) # 改变图片的亮度与对比度 def relight(img%2c light=1%2c bias=0): w = img.shape[1] h = img.shape[0] #image = [] for i in range(0%2cw): for j in range(0%2ch): for c in range(3): tmp = int(img[j%2ci%2cc]*light + bias) if tmp > 255: tmp = 255 elif tmp < 0: tmp = 0 img[j%2ci%2cc] = tmp return img #使用dlib自带的frontal_face_detector作为我们的特征提取器 detector = dlib.get_frontal_face_detector # 打开摄像头 参数为输入流,可以为摄像头或视频文件 camera = cv2.VideoCapture(0) #camera = cv2.VideoCapture('C:/Users/CUNGU/Videos/Captures/wang.mp4') index = 1 while True: if (index <= 20):#存储15张人脸特征图像 print('Being processed picture %s' % index) # 从摄像头读取照片 success%2c img = camera.read # 转为灰度图片 gray_img = cv2.cvtColor(img%2c cv2.COLOR_BGR2GRAY) # 使用detector进行人脸检测 dets = detector(gray_img%2c 1) for i%2c d in enumerate(dets): x1 = d.top if d.top > 0 else 0 y1 = d.bottom if d.bottom > 0 else 0 x2 = d.left if d.left > 0 else 0 y2 = d.right if d.right > 0 else 0 face = img[x1:y1%2cx2:y2] # 调整图片的对比度与亮度, 对比度与亮度值都取随机数,这样能增加样本的多样性 face = relight(face%2c random.uniform(0.5%2c 1.5)%2c random.randint(-50%2c 50)) face = cv2.resize(face%2c (size%2csize)) cv2.imshow('image'%2c face) cv2.imwrite(output_dir+'/'+str(index)+'.jpg'%2c face) index += 1 key = cv2.waitKey(30) & 0xff if key == 27: break else: print('Finished!') # 释放摄像头 release camera camera.release # 删除建立的窗口 delete all the windows cv2.destroyAllWindows break
运行效果:
根据抓取的图片和人脸识别模型->训练得到的20个的68个特征数据集以及1个平均特征值存入csv文件
每张图片的68个特征数据集可以不用存取,他们只是中间量,计算平均值以后就可以抛弃了,这里把他们输出出来只是为了方便学习。
代码:
# 从人脸图像文件中提取人脸特征存入 CSV # Features extraction from images and save into features_all.csv # return_128d_features 获取某张图像的128D特征 # compute_the_mean 计算128D特征均值 from cv2 import cv2 as cv2 import os import dlib from skimage import io import csv import numpy as np # 要读取人脸图像文件的路径 path_images_from_camera = "D:/No1WorkSpace/JupyterNotebook/Facetrainset/" # Dlib 正向人脸检测器 detector = dlib.get_frontal_face_detector # Dlib 人脸预测器 predictor = dlib.shape_predictor("D:/No1WorkSpace/JupyterNotebook/model/shape_predictor_68_face_landmarks.dat") # Dlib 人脸识别模型 # Face recognition model%2c the object maps human faces into 128D vectors face_rec = dlib.face_recognition_model_v1("D:/No1WorkSpace/JupyterNotebook/model/dlib_face_recognition_resnet_model_v1.dat") # 返回单张图像的 128D 特征 def return_128d_features(path_img): img_rd = io.imread(path_img) img_gray = cv2.cvtColor(img_rd%2c cv2.COLOR_BGR2RGB) faces = detector(img_gray%2c 1) print("%-40s %-20s" % ("检测到人脸的图像 / image with faces detected:"%2c path_img)%2c '\n') # 因为有可能截下来的人脸再去检测,检测不出来人脸了 # 所以要确保是 检测到人脸的人脸图像 拿去算特征 if len(faces) != 0: shape = predictor(img_gray%2c faces[0]) face_descriptor = face_rec.compute_face_descriptor(img_gray%2c shape) else: face_descriptor = 0 print("no face") return face_descriptor # 将文件夹中照片特征提取出来%2c 写入 CSV def return_features_mean_personX(path_faces_personX): features_list_personX = [] photos_list = os.listdir(path_faces_personX) if photos_list: for i in range(len(photos_list)): with open("D:/No1WorkSpace/JupyterNotebook/feature/featuresGiao"+str(i)+".csv"%2c "w"%2c newline="") as csvfile: writer = csv.writer(csvfile) # 调用return_128d_features得到128d特征 print("%-40s %-20s" % ("正在读的人脸图像 / image to read:"%2c path_faces_personX + "/" + photos_list[i])) features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i]) print(features_128d) writer.writerow(features_128d) # 遇到没有检测出人脸的图片跳过 if features_128d == 0: i += 1 else: features_list_personX.append(features_128d) else: print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/'%2c '\n') # 计算 128D 特征的均值 # N x 128D -> 1 x 128D if features_list_personX: features_mean_personX = np.array(features_list_personX).mean(axis=0) else: features_mean_personX = '0' return features_mean_personX # 读取某人所有的人脸图像的数据 people = os.listdir(path_images_from_camera) people.sort with open("D:/No1WorkSpace/JupyterNotebook/feature/features_all.csv"%2c "w"%2c newline="") as csvfile: writer = csv.writer(csvfile) for person in people: print("##### " + person + " #####") # Get the mean/average features of face/personX%2c it will be a list with a length of 128D features_mean_personX = return_features_mean_personX(path_images_from_camera + person) writer.writerow(features_mean_personX) print("特征均值 / The mean of features:"%2c list(features_mean_personX)) print('\n') print("所有录入人脸数据存入 / Save all the features of faces registered into: D:/myworkspace/JupyterNotebook/People/feature/features_all2.csv")
如果要输出每一张图片的特征数据集,这里要用到Python的文件批量生成。
代码运行效果
通过计算特征数据集的 欧氏距离 作对比来识别人脸,取欧氏距离最小的数据集进行匹配。
欧氏距离也称欧几里得距离或欧几里得度量,是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。在二维和三维空间中的欧氏距离的就是两点之间的距离。使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。二维空间公式:
代码:
# 摄像头实时人脸识别 import os import dlib # 人脸处理的库 Dlib import csv # 存入表格 import time import sys import numpy as np # 数据处理的库 numpy from cv2 import cv2 as cv2 # 图像处理的库 OpenCv import pandas as pd # 数据处理的库 Pandas # 人脸识别模型,提取128D的特征矢量 # face recognition model%2c the object maps human faces into 128D vectors # Refer this tutorial: http://dlib.net/python/index.html#dlib.face_recognition_model_v1 facerec = dlib.face_recognition_model_v1("D:/No1WorkSpace/JupyterNotebook/model/dlib_face_recognition_resnet_model_v1.dat") # 计算两个128D向量间的欧式距离 # compute the e-distance between two 128D features def return_euclidean_distance(feature_1%2c feature_2): feature_1 = np.array(feature_1) feature_2 = np.array(feature_2) dist = np.sqrt(np.sum(np.square(feature_1 - feature_2))) return dist # 处理存放所有人脸特征的 csv path_features_known_csv = "D:/No1WorkSpace/JupyterNotebook/feature/features_all.csv" csv_rd = pd.read_csv(path_features_known_csv%2c header=None) # 用来存放所有录入人脸特征的数组 # the array to save the features of faces in the database features_known_arr = [] # 读取已知人脸数据 # print known faces for i in range(csv_rd.shape[0]): features_someone_arr = [] for j in range(0%2c len(csv_rd.loc[i%2c :])): features_someone_arr.append(csv_rd.loc[i%2c :][j]) features_known_arr.append(features_someone_arr) print("Faces in Database:"%2c len(features_known_arr)) # Dlib 检测器和预测器 # The detector and predictor will be used detector = dlib.get_frontal_face_detector predictor = dlib.shape_predictor('D:/No1WorkSpace/JupyterNotebook/model/shape_predictor_68_face_landmarks.dat') # 创建 cv2 摄像头对象 # cv2.VideoCapture(0) to use the default camera of PC%2c # and you can use local video name by use cv2.VideoCapture(filename) cap = cv2.VideoCapture(0) # cap.set(propId%2c value) # 设置视频参数,propId 设置的视频参数,value 设置的参数值 cap.set(3%2c 480) # cap.isOpened 返回 true/false 检查初始化是否成功 # when the camera is open while cap.isOpened: flag%2c img_rd = cap.read kk = cv2.waitKey(1) # 取灰度 img_gray = cv2.cvtColor(img_rd%2c cv2.COLOR_RGB2GRAY) # 人脸数 faces faces = detector(img_gray%2c 0) # 待会要写的字体 font to write later font = cv2.FONT_HERSHEY_COMPLEX # 存储当前摄像头中捕获到的所有人脸的坐标/名字 # the list to save the positions and names of current faces captured pos_namelist = [] name_namelist = [] # 按下 q 键退出 # press 'q' to exit if kk == ord('q'): break else: # 检测到人脸 when face detected if len(faces) != 0: # 获取当前捕获到的图像的所有人脸的特征,存储到 features_cap_arr # get the features captured and save into features_cap_arr features_cap_arr = [] for i in range(len(faces)): shape = predictor(img_rd%2c faces[i]) features_cap_arr.append(facerec.compute_face_descriptor(img_rd%2c shape)) # 遍历捕获到的图像中所有的人脸 # traversal all the faces in the database for k in range(len(faces)): print("##### camera person"%2c k+1%2c "#####") # 让人名跟随在矩形框的下方 # 确定人名的位置坐标 # 先默认所有人不认识,是 unknown # set the default names of faces with "unknown" name_namelist.append("unknown") # 每个捕获人脸的名字坐标 the positions of faces captured pos_namelist.append(tuple([faces[k].left%2c int(faces[k].bottom + (faces[k].bottom - faces[k].top)/4)])) # 对于某张人脸,遍历所有存储的人脸特征 # for every faces detected%2c compare the faces in the database e_distance_list = [] for i in range(len(features_known_arr)): # 如果 person_X 数据不为空 if str(features_known_arr[i][0]) != '0.0': print("with person"%2c str(i + 1)%2c "the e distance: "%2c end='') e_distance_tmp = return_euclidean_distance(features_cap_arr[k]%2c features_known_arr[i]) print(e_distance_tmp) e_distance_list.append(e_distance_tmp) else: # 空数据 person_X e_distance_list.append(999999999) # 找出最接近的一个人脸数据是第几个 # Find the one with minimum e distance similar_person_num = e_distance_list.index(min(e_distance_list)) print("Minimum e distance with person"%2c int(similar_person_num)+1) # 计算人脸识别特征与数据集特征的欧氏距离 # 距离小于0.4则标出为可识别人物 if min(e_distance_list) < 0.4: # 这里可以修改摄像头中标出的人名 # Here you can modify the names shown on the camera # 1、遍历文件夹目录 folder_name = 'D:/No1WorkSpace/JupyterNotebook/Facetrainset/' # 最接近的人脸 sum=similar_person_num+1 key_id=1 # 从第一个人脸数据文件夹进行对比 # 获取文件夹中的文件名:1wang、2zhou、3... file_names = os.listdir(folder_name) for name in file_names: # print(name+'->'+str(key_id)) if sum ==key_id: #winsound.Beep(300%2c500)# 响铃:300频率,500持续时间 name_namelist[k] = name[1:]#人名删去第一个数字(用于视频输出标识) key_id += 1 # 播放欢迎光临音效 #playsound('D:/myworkspace/JupyterNotebook/People/music/welcome.wav') # print("May be person "+str(int(similar_person_num)+1)) # -----------筛选出人脸并保存到visitor文件夹------------ for i%2c d in enumerate(faces): x1 = d.top if d.top > 0 else 0 y1 = d.bottom if d.bottom > 0 else 0 x2 = d.left if d.left > 0 else 0 y2 = d.right if d.right > 0 else 0 face = img_rd[x1:y1%2cx2:y2] size = 64 face = cv2.resize(face%2c (size%2csize)) # 要存储visitor人脸图像文件的路径 path_visitors_save_dir = "D:/No1WorkSpace/JupyterNotebook/KnownFacetrainset/" # 存储格式:2019-06-24-14-33-40wang.jpg now_time = time.strftime("%Y-%m-%d-%H-%M-%S"%2c time.localtime) save_name = str(now_time)+str(name_namelist[k])+'.jpg' # print(save_name) # 本次图片保存的完整url save_path = path_visitors_save_dir+'/'+ save_name # 遍历visitor文件夹所有文件名 visitor_names = os.listdir(path_visitors_save_dir) visitor_name='' for name in visitor_names: # 名字切片到分钟数:2019-06-26-11-33-00wangyu.jpg visitor_name=(name[0:16]+'-00'+name[19:]) # print(visitor_name) visitor_save=(save_name[0:16]+'-00'+save_name[19:]) # print(visitor_save) # 一分钟之内重复的人名不保存 if visitor_save!=visitor_name: cv2.imwrite(save_path%2c face) print('新存储:'+path_visitors_save_dir+'/'+str(now_time)+str(name_namelist[k])+'.jpg') else: print('重复,未保存!') else: # 播放无法识别音效 #playsound('D:/myworkspace/JupyterNotebook/People/music/sorry.wav') print("Unknown person") # -----保存图片------- # -----------筛选出人脸并保存到visitor文件夹------------ for i%2c d in enumerate(faces): x1 = d.top if d.top > 0 else 0 y1 = d.bottom if d.bottom > 0 else 0 x2 = d.left if d.left > 0 else 0 y2 = d.right if d.right > 0 else 0 face = img_rd[x1:y1%2cx2:y2] size = 64 face = cv2.resize(face%2c (size%2csize)) # 要存储visitor-》unknown人脸图像文件的路径 path_visitors_save_dir = "D:/No1WorkSpace/JupyterNotebook/UnKnownFacetrainset/" # 存储格式:2019-06-24-14-33-40unknown.jpg now_time = time.strftime("%Y-%m-%d-%H-%M-%S"%2c time.localtime) # print(save_name) # 本次图片保存的完整url save_path = path_visitors_save_dir+'/'+ str(now_time)+'unknown.jpg' cv2.imwrite(save_path%2c face) print('新存储:'+path_visitors_save_dir+'/'+str(now_time)+'unknown.jpg') # 矩形框 # draw rectangle for kk%2c d in enumerate(faces): # 绘制矩形框 cv2.rectangle(img_rd%2c tuple([d.left%2c d.top])%2c tuple([d.right%2c d.bottom])%2c (0%2c 255%2c 255)%2c 2) print('\n') # 在人脸框下面写人脸名字 # write names under rectangle for i in range(len(faces)): cv2.putText(img_rd%2c name_namelist[i]%2c pos_namelist[i]%2c font%2c 0.8%2c (0%2c 255%2c 255)%2c 1%2c cv2.LINE_AA) print("Faces in camera now:"%2c name_namelist%2c "\n") #cv2.putText(img_rd%2c "Press 'q': Quit"%2c (20%2c 450)%2c font%2c 0.8%2c (84%2c 255%2c 159)%2c 1%2c cv2.LINE_AA) cv2.putText(img_rd%2c "Face Recognition"%2c (20%2c 40)%2c font%2c 1%2c (0%2c 0%2c 255)%2c 1%2c cv2.LINE_AA) cv2.putText(img_rd%2c "Visitors: " + str(len(faces))%2c (20%2c 100)%2c font%2c 1%2c (0%2c 0%2c 255)%2c 1%2c cv2.LINE_AA) # 窗口显示 show with opencv cv2.imshow("camera"%2c img_rd) # 释放摄像头 release camera cap.release # 删除建立的窗口 delete all the windows cv2.destroyAllWindows
若直接使用本代码,文件目录弄成中文会乱码
运行效果:
图中两人的特征数据集均已被收集并录入,所以可以识别出来,如果没有被录入的人脸就会出现unknown。
没有吴京叔叔的数据集,所以他是陌生人